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Abstract. We conducted a large-scale evaluation of some popular Anti-
Phishing Entities (APEs). As part of this, we submitted arrays of
CAPTCHA challenge-laden honey sites to 7 APEs. An analysis of the
“click-through rates” during the visits from the APEs showed strong
evidence for the presence of formidable human analysis systems in con-
junction with automated crawler systems. In summary, we estimate that
as many as 10% to 24% of URLs submitted to each of 4 APEs (Google
Safe Browsing, Microsoft SmartScreen, Bitdefender and Netcraft) were
likely visited by human analysts. In contrast to prior works, these mea-
surements present a very optimistic picture for web security as, for the
first time, they show presence of expansive human analysis systems to
tackle suspicious URLs that might otherwise be challenging for auto-
mated crawlers to analyze.

This finding allowed us an opportunity to conduct the first systematic
study of the robustness of the human analysis systems of APEs which
revealed some glaring weaknesses in them. We saw that all the APEs we
studied fall prey to issues such as lack of geolocation and client device
diversity exposing their human systems to targeted evasive attacks. Apart
from this, we also found a specific weakness across the entire APE ecosys-
tem that enables creation of long-lasting phishing pages targeted exclu-
sively against Android/Chrome devices by capitalizing on discrepancies
in web sensor API outputs. We demonstrate this with the help of 10 arti-
ficial phishing sites that survived indefinitely despite repeated reporting
to all APEs. We suggest mitigations for all these issues. We also conduct
an elaborate disclosure process with all affected APEs in an attempt to
persuade them to pursue these mitigations.

1 Introduction

As web-based social engineering attacks continue to rise in number and variety,
it has become imperative for security organizations to invest in systems that
inspect web sites for signs of maliciousness. Such systems are commonly referred
to as Anti-Phishing Entities (APEs) and play a critical and omnipresent role
in preventing web users from visiting harmful websites. For example, the Google
Safe Browsing (GSB) service is a popular APE that receives URL reports from
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users around the world and verifies them. After verification, GSB sends malicious
URLs to URL blocklists that are currently deployed in about 4 billion devices
of users around the world [20]. It is to be noted that despite the name, APEs
are not only meant for thwarting phishing attacks and have the responsibility of
identifying and blocking all kinds of malicious web content.

Given the scale of the web, it is reasonable to expect that a large proportion of
visits from these APEs are from fully automated web security crawler bots
which would likely be using machine learning techniques or carefully crafted
heuristics to detect whether or not a given candidate page is malicious. In order
to foil such attempts of these bots, attackers have begun to design and use
phishing pages that are fitted with CAPTCHAs in the initial landing pages [14,
23]. Since CAPTCHAs are inherently designed to prevent bots from bypassing
them, they can be used effectively as a cloaking vector against APEs. Thus, it has
now become imperative for APEs to augment security crawler bots with human
analysis systems where human security analysts manually inspect (a subset
of) web sites reported to them. Another important reason we expect APEs to
have human analysis subsystems is for evaluating the potential false positive and
false negative cases that might inevitably result from the bot-based automated
analysis systems. Thus, these human analysis systems are vital for functioning
of APEs. In addition to such importance, human analysis systems are by nature
very expensive to maintain due to high labor costs. Given this, it is crucial for
organizations to maintain robustness of these expensive human analysis systems
to make sure they are not subject to targeted evasion attacks. To the best of
our knowledge, there has been no study to date that focuses on evaluating the
robustness of these human analysis subsystems of APEs.

In this paper, we attempt to fill this knowledge gap. We conduct the largest
study thus far on delineating the human-based visits made by APEs. The most
closely related work to ours is [13] which conducted a small scale study to detect
the capability of APEs to overcome CAPTCHA-based blockages. The study lim-
ited each one of 7 popular APEs to 6 test phishing sites fitted with a CAPTCHA.
However, unfortunately, quite contrary to our expectations laid out above, this
study has found that none of the studied APEs were capable of clicking through
CAPTCHAs in potential phishing pages. For this paper, we attempted to repeat
this experiment albeit on a much larger scale. For this, we leveraged a scalable
APE evaluation design methodology recently proposed in [10]. This allowed us
to submit multiple test site sets of 100 sites each with different CAPTCHAs to
each of 7 popular APEs. We also utilized this opportunity to also collect a wider
range of data that captures the dynamic behavior of APEs when visiting web-
sites. This data included all mouse, touch and key press events as well as events
garnered from other advanced web sensor APIs such as Gyrometer, Accelerome-
ter etc. To the best of our knowledge, this is the first work to collect and analyze
such biometric data from APEs. With a similar setup, we also performed a user
study involving 433 users in order to contrast this biometric data with that of
regular users in order to gauge the existence of anomalies that can be abused by
attackers for evasion attacks in the future.
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In complete contrast to the results from [13], our study showed the existence
of a vibrant and powerful ecosystem of human analysts being employed by at
least 4 of the 7 popular APEs that we studied. These are Microsoft SmartScreen,
Google Safe Browsing (GSB), Bitdefender and Netcraft. Our conservative esti-
mates based on CAPTCHA-solving rates show that these APEs are capable of
arranging as many as 10–24% of submitted URLs to be visited manually by a
human analysts. Thus, our such high numbers show present-day APEs in a very
positive light for the first time in terms of their efforts to support formidable
manual analysis systems. These measurements present a very optimistic picture
for web security as, for the first time, they show presence of expansive human
analysis systems to tackle suspicious URLs that might otherwise be challenging
for automated crawlers to analyze.

These new findings thus also allowed us to perform the first systematic study
of the robustness of these human analysis systems which revealed some glaring
weaknesses in them. We saw that all the APEs we studied fall prey to the same
issues such as lack of geolocation and client device diversity that exposes their
human systems to targeted evasive attacks. Significantly, our analysis reveals
that even cumulatively, the APEs are being affected by these issues. While prior
works such as [17] have helped improve network and device diversity [10], we
find that these changes have not carried over to the human analyst subsystems.
For instance, while some APEs are using more than 40 different countries as
sources for their bot visits, all of them seem to be using only one or two coun-
tries for sourcing traffic from human analysts. Similarly, we observed that large
APEs such as GSB and Outlook were only using APE-specific browsers (such as
ChromeOS and Microsoft Edge respectively) for their human analysts despite
them lacking in general popularity. Also, none of the APEs are using mobile
user agents for human vetting thus exposing users to potential “mobile-only”
malicious web pages that completely avoid human analyst systems. In the case
of Google Safe Browsing, we also saw evidence for some timing-based blind spots
as no human analyst visits have occurred during the weekends.

Interestingly, we also found that most of these problems are generally not
associated with the automated bot systems of these APEs. This indicates that
these issues can likely be fixed easily for the expensive human inspection sys-
tems as well. However, as an exception to this, we found one issue that is cur-
rently affecting all APE systems purported to be visiting from Android/Chrome
devices. Namely, we found that none of these visits were giving away web sensor
API data upon page load in sharp contrast to most real Android/Chrome devices
that do so in their default configuration (as per our user study). We show that
this discrepancy can be leveraged to create long-lasting phishing pages tailored
towards this very popular platform. We suggest mitigations for all these issues.
We conducted an elaborate disclosure process with all APEs in an attempt to
persuade APEs to pursue these mitigations and help make a practical impact in
improving the security posture of all APEs.
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In summary, our contributions with this paper are as follows:

1. Delineation: With the help of a large-scale study, we demonstrate for the first
time, evidence for industry-wide use of elaborate human analysis systems by
APEs.

2. Evaluation: We conduct the first systematic evaluation of the robustness of
these human systems and find multiple serious issues across different APEs
that expose them to targeted evasive attacks.

3. Impact: We suggest practical mitigations to resolve these issues and conduct
an elaborate disclosure process with the affected APEs.

2 System Description

2.1 System Overview

The predominant goal of our project was to measure the prevalence of any human
analysis systems being deployed by popular APEs. If we found the presence of
any such human analysis systems, we had also planned to conduct forensic anal-
ysis on such systems in an effort to evaluate their robustness to evasion attacks.
In order to support these goals, we built a measurement and data collection
system for APEs. An overview of this system is presented in Fig. 1.

Fig. 1. System overview

The main component of our system is the honey server that is capable of
serving several identical honey sites that are designed for the measurements in
this project. Each honey site is fitted with a CAPTCHA in order to help us
determine if the visitor is human. The ethical considerations behind this design
are discussed in Sect. 5. We relied upon the APE evaluation approach proposed
in [10] in order to make our system scalable. Concretely, we registered multiple
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domain names and made them all point to the same honey server. We then
separated these domain names into disjoint sets and submitted them to various
APEs. These submissions thus elicited visits from both the bot and human
subsystems of these APEs. For each visit, we leveraged the event knowledge of
whether a relevant CAPTCHA challenge has been solved or not as a data point
to infer whether that visitor is human or bot.

Besides deploying CAPTCHA challenges, we also equipped each honey site
with two kinds of forensic recording capabilities as discussed below.

1. Motion biometrics. We embedded JavaScript code in our honey sites to
listen and record multiple Web API events generated from UI devices such as
mouse events (e.g. click, mousemove etc.), keyboard events (e.g. keyup, keydown
etc.), and Touch events (e.g. touchstart, touchmove). Furthermore, upon page
load, we register event listeners for Web Sensor APIs to record data from common
mobile-specific devices such as gyroscope, accelerometer, magnetometer and light
sensors. As some of this data (such as movement data) is continuously generated
as long as visitors are on the honey site, we added the ability to offload the
collected data to our server every 500 ms in order to minimize the risk of losing
data due to unexpected network issues. We later analyze this collected data to
reveal some interesting insights.

2. Browser fingerprints. We also fitted each of the honey sites with capabili-
ties to collect different valuable browser fingerprints from the visitors. Our plan
was to utilize this data to correlate visits across different honey sites. Source IP
address and HTTP request headers are some of the basic browser fingerprints
that we collect from a visitor. Apart from this, we also collect some other sophis-
ticated browser fingerprints. Recently, it has be shown that popular APEs can
be easily identified (and evaded) [10] based on HTML5 API-based fingerprint-
ing techniques such as Canvas [16] and WebGL fingerprints. For this reason, we
utilized the browser fingerprinting code implementation in [10] to collect these
two additional data points from the visitors to our honey sites.

User Study. While soliciting visits from APEs to our honey sites allowed us to
collect data from both bots as well as human analysis systems, we also collected
similar data from real humans. This enabled us to compare and contrast the
set up used by the human analysis systems of APEs in the context of how well
they blend in with systems used by regular humans. For this, we set up a user
study in which we requested each participant to solve the CAPTCHA challenges
presented to them. More details about this are described later in this section.

2.2 CAPTCHAs for Honey Sites

As mentioned previously, we wanted to use the ability of the visitors to solve
CAPTCHA challenges as a key data point to positively identify human visi-
tors from APEs to our honey sites. However, depending on only a single type
of challenge to differentiate between humans and bots is risky as APEs might
utilize sophisticated bots or other specialized solutions that might break such a



Delineating and Evaluating the Human Analysis Systems of APEs 161

challenge. Hence, instead of relying on just a single challenge, we use an array of
7 CAPTCHAs ranging from those that are easily by-passable to commercial as
well as custom-built variants. We describe them below along with our rationale
for choosing them.

(a) Click / Form (b) Popup (c) Click

(d) reCAPTCHA v2 (e) Math (f) Shape

Fig. 2. Various CAPTCHAs deployed in honey sites used for studying APEs.

Easy CAPTCHAs. We crafted three CAPTCHAs which can potentially be
easily circumvented by a bot. These CAPTCHAs require the user to simply click
on a regular HTML clickable button or a form element or a JavaScript confirm()
dialog box. We refer to these as Click, Form and Popup CAPTCHAs respec-
tively. Click and Form challenges have to be solved by clicking on an element.
They visually look alike and are shown in Fig. 2a. These can be brute-forced
easily by any web crawling that uses an automated browsing tool (for exam-
ple, Selenium [6] or Puppeteer [4]) to click on all “clickable” elements in a page.
When implementing these two CAPTCHAs, we used a JavaScript function as the
onclick event handler for the buttons to record CAPTCHA success. However,
these functions can also be called directly giving the appearance of a successful
button click to our backend server. Thus, this provides for another simple bypass
mechanism for bots which might be configured to blindly call event handler func-
tions even without making any clicks whatsoever. The Popup challenge pages
trigger a function on page load which a Window.confirm() DOM API call. If
this call returns true, then passes a success indicator to our backend server. For
this to happen, the browsing agent needs to click on (or presses return key)
on the “OK” button on the JavaScript dialog that pops up (Fig. 2b). However,
we point that some previous security crawler setups have managed to automate
JS dialogs interactions with the help of in-browser code changes [21] or browser
extensions [15] which can be some potential ways to bypass this CAPTCHA in
an automated fashion.
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Commercial CAPTCHAs. As the CAPTCHAs above can potentially be
brute-forced or bypassed by an automated agent, these are not sufficient to con-
fidently separate humans from bots being used by APEs. Hence, we also used
two CAPTCHAs that are much more sophisticated and similar to the ones used
in real websites. The first one we used is a text CAPTCHA service provided
by captchas.net [1] (Fig. 2c). The second is a “behavioral” CAPTCHA from
Google named reCAPTCHA (version-2) [5]. This CAPTCHA asks visitors to
click on a button to verify that they are not a bot during which time a risk anal-
ysis engine checks static as well as dynamic behavioral patterns of the visitor to
determine if they are a bot or not (Fig. 2c). In case of suspicion, the engine will
lead the visitor to an image-grid based visual CAPTCHA which the visitor will
need to solve to prove they are human [5].

Custom CAPTCHAs. While the above mentioned commercial CAPTCHAs
are not very easy to solve in an automated fashion, it is not an impossible
endeavor. For example, researchers have demonstrated that an earlier version
of Google’s reCAPTCHA can be broken easily by using a Convolutional Neural
Network (CNN) model [12]. More recently, it has been demonstrated that Gener-
ative Adversarial Networks (GANs) can be used to solve generic versions of text
CAPTCHAs at the same rate as humans [22]. Furthermore, it is also possible for
APEs to seek cooperation from CAPTCHA providers in order to bypass them.
This is especially possible if the APE as well as the CAPTCHA provider are
from the same organization. For example, Google’s Safe Browsing service can
potentially have an internal arrangement with Google’s reCAPTCHA service so
as to allow their crawlers to automatically bypass all their requests. In order to
account for such potential automated bypasses, we crafted two custom in-house
variants of CAPTCHAs: Math and Shape CAPTCHA.

The Math CAPTCHA asks the visitor to give the output of a simple arith-
metic operation. It is to be noted that our intention here was to keep this
CAPTCHA’s functionality similar to existing Math CAPTCHAs such as [3]
while at the same time using our own code for implementation. In addition,
we also built a new custom CAPTCHA named Shape CAPTCHA. It simply
asks the visitor to click on a random geometric shape made of a random color
(Fig. 2f).

Thus, we design our CAPTCHA challenges above and separate them into 3
categories with an expectation that they are going to be increasingly difficult
to be solved by an automated bot. However, we clarify that our goal with these
challenges is not to create any CAPTCHA that is impossible for bots to solve.
We concede that even our custom challenges can be tackled successfully by APEs
if they tailor their bots after analyzing some samples of our challenges. Instead,
our goal here is simply to utilize multiple CAPTCHAs so as to enable collection
of data on click-through rates from multiple vantage points and then correlate
this information with other forensic data from these visits in order to estimate
the extent of human analysis components being deployed by present-day APEs.
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2.3 Experimental Setup

We will now describe the experimental setup we used for the measurements and
analysis we performed for this paper.

Anti-phishing Entities. We tried to cast a wide net in terms of the anti-
phishing entities we consider for this work in order to ensure our results are
generalizable across the spectrum of APE providers. The prior work [13] which
first attempted to study the human analysis systems of APEs focused on 6
providers in their main analysis. Out of these 6, PhishTank has disabled new
user registrations to their web portal for submitting URL reports and was hence
left out of consideration for this paper. We included the remaining 5 providers
in our analysis: Google Safe Browsing (GSB), Microsoft SmartScreen, APWG,
Netcraft and OpenPhish. Further, we also added two other APEs in our analysis:
Bitdefender and ZeroCert. As in [10], using Python and Selenium-based browser
automation, we created a system to be able to send URL reports containing links
to our honey sites to the web portals of these 7 providers at a preset frequency.

Honey Sites. For each of the 7 APEs and 7 CAPTCHAs we considered, we
created 100 honey sites. Thus, throughout our experimentation period, we sub-
mitted 700 honey sites to each of the 7 APEs. We utilized a distinct and new
domain name for each honey site but due to financial restrictions we could only
register 10 new second-level domain names (TLD+1) for this entire experiment.
We created unique TLD+2 domains for the honey sites uniformly under these 10
TLD+1 domains. These domains were registered under the popular .com TLD
as well as other extensions often abused by phishing actors such as .xyz, .site
and .club. We relied on wildcard DNS records and .htacess rewrite rules in
the web server to support these TLD+2 domains for all the 4900 sites utilized
in our study. We note that this practice of relying upon a handful of TLD+1
domain names to conduct a large-scale analysis of APEs has been demonstrated
to be a viable method in [10]. We avoid discussing this design rationale here for
brevity but instead refer interested readers to [10] for detailed arguments as well
as experimental results supporting this approach.

We spread out these 700 URL submissions to each APE over a five week
period in March and April 2021 averaging about 20 per day.

User Study. For our user study, we first sought an IRB exemption from our
university and then used Amazon’s Mechanical Turk (MTurk) platform to recruit
participants for clicking through the CAPTCHAs on our honey sites. For this,
we created a dedicated honey site with 7 different web pages for each of the
7 CAPTCHA challenges. As explained before, these pages are identical to the
pages on honey sites distributed to the APEs. We set up this study as 7 different
user surveys on MTurk in order to ensure that no same participant visits a
particular challenge page more than once. We conducted this study over a one
week period in the first week of April 2021. Overall, each of our 7 web pages
were visited 210 times thus generating a total of 1470 visits in the user study.
Based on data provided by MTurk and IP address information, we were able to
attribute these visits to 433 unique participants from about 26 different countries
all over the world.
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3 Delineation of Human Analysis Systems

The experiment described previously yielded data about the click-through rates
of APEs for various CAPTCHAs as shown in Table 1. In the table, the first
“Visits” sub-rows for all APEs show information about the number of visits
(i.e. HTTP sessions) that were made to the honey sites of different categories
that we submitted. Specifically, the first sub-columns (marked by xy) show the
number of visits in which the given category’s CAPTCHA challenge was solved
successfully and is hence indicative of a human visit. The second “All” sub-
columns represent the total number of visits made for each of the 100 sites
submitted in a given category irrespective of whether the challenge was solved.
It is to be noted how many of these numbers are more than 100 as APEs often
make repeated visits to a submitted site. The next “Sites” sub-row for each APE
shows these same counts at a “site-level” i.e. the number of unique sites whose
CAPTCHA pages were clicked-through or visited by APEs out of a maximum of
100 for each category. Analysis of the number of unique sites visited shows that
our submission module has successfully solicited requests from APEs in most
cases. Except for Bitdefender, most other APEs have visited most of the sites
we submitted to them. APWG, Netcraft, OpenPhish and ZeroCert in particular,
have visited all 700 sites that we submitted to them at least once. Across all
APEs, we can infer that many sites are visited multiple times by the large amount
of visits for each category of submitted sites. These results indicating very high
scan-back rates and repeated visits agree with prior recent results from [10].

One key thing to observe from Table 1 is that 4 APEs, namely, Bitdefender,
GSB, SmartScreen and Netcraft, have had significant and consistent success
in clicking through the entire spectrum of our challenges including customized
CAPTCHA challenges. This indicates high likelihood of a human analysis com-
ponent in their systems. These 4 APEs are highlighted in blue color in the table
and we focus most of our attention on these in the rest of this paper. Other than
a couple of exceptions, these 4 APEs have been able to click-through at least
10% of the submitted sites across all challenges. This result indicates a stark con-
trast from the results presented in [13] which showed that practically none of the
APEs studied were able to solve the CAPTCHAs presented to them. While we
cannot ascertain the reason for this difference, we surmise that this could either
be due to the small scale of their experiments which occluded these insights or
the early timeline of their experiments at which time APEs have potentially not
yet deployed the human analysis systems.
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When looking at the success rates of submitted sites, 5 CAPTCHA/APE
combinations (highlighted in gray) stand out in terms of anomalously high click-
through rates in comparison to other numbers in the same rows1. For example,
GSB made 192 successful visits to Popup challenge pages while the number of
successful visits to all other challenges were only around 30. Similarly, Bitde-
fender visited 71 Popup pages successfully while the rest of the pages had a
maximum of 20 visits. Netcraft made 111 and 116 successful visits to Click and
Form challenge pages while the remaining categories solicited only about 15 suc-
cessful visits. Finally, ZeroCERT was only successful in solving Popup challenges.
It is to be noted that all these 5 cases involve Easy category CAPTCHAs which
as we mentioned previously can easily be tackled by automated crawler setups.
We suspected that this is the case with these pages and conducted a clustering
analysis that helped us identify such cases in a generic, non-heuristic manner.
We discuss this below.

3.1 Filtering Automated Crawler Visits

As discussed in the previous section, our honey sites collected the Canvas and
WebGL browser fingerprint information as well as motion biometrics data from
all the visits. For each of the APEs, we leveraged this information to cluster
all the successful CAPTCHA solving visits that were made to our sites. The
results of this clustering process were very insightful. We noticed that across
multiple APEs, there were a few clusters where all of the component visits had no
motion biometric data whatsoever (i.e. keyboard, mouse or touch data) despite
solving the challenge each time. Since it is not possible for a human analyst to
solve these challenges without such movement we consider these as actions of
automated analysis systems. Interestingly, for each APE, all these “no-motion”
clusters corresponded with the 5 APE/CAPTCHA combinations (the gray cells
in the table) which we already suspected. As a result, we decided to discount all
the visits that were parts of these clusters from the human analysis components
of our study. The resulting numbers after these deductions are shown in the
table itself.

It is to be noted how these deductions greatly decreased the numbers in the
suspected cases and made the human visit counts for all 4 APEs ultimately much
more uniform across different challenges. These deductions show that GSB, Bit-
defender and ZeroCERT used bots to solve Popup CAPTCHA challenges and
that Netcraft used bots for solving large numbers of Click and Form CAPTCHA.
This is likely using the mechanisms we already discussed in Sect. 2.2. Interest-
ingly, after these deductions we can see that Netcraft has a 1 to 1 correspondence
for sites and visits from human systems for all challenges. This means that with
Netcraft, human analysts typically do not revisit a visited site unlike in the
case of the other APEs. Another interesting thing to note in is the absence
of any evidence for bot-assisted challenge solving for GSB’s reCAPTCHA

1 Please refer to the numbers that were struck through in the gray cells in Table 1.
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challenges despite both GSB and reCAPTCHA services belonging to Google.
GSB’s automation seemed to only be limited to Popup challenges.

3.2 Human Systems’ Impact Analysis

The last column of Table 1 indicating the summary statistics of human visits for
each APE paints a very optimistic picture. In summary, the 4 APEs were able
to visit between 10% and 24% of the submitted sites. These are very impressive
numbers given that APEs such as Google Safe Browsing receive billions of URL
reports everyday [2]. This shows that current APEs have likely invested large
amounts of financial resources towards building these expansive human analysis
systems. Assuming that each APE has an independent mechanism for deciding
if a submitted site will be viewed by human analyst, we can also compute the
probability for a candidate site that is submitted to all the APEs to be inspected
by a human. Concretely, let pi denote this probability for each APE. Then,
the summary probability can be computed by 1 − ∏4

i=1 (1 − pi) which gives a
formidable probability value of 43% for human analysis of a candidate site. In
addition, it should also be noted that we only made a single submission of report
to APEs for each honey site from a single end point. In the real world, large-scale
social engineering attacks will often trigger repeated reporting of the complicit
URLs from diverse sources. In such a case, it is possible for this manual analysis
probability to be even more than computed here.

4 Evaluation of Human Analysis Systems

The previous section demonstrated that multiple APEs built elaborate human
analysis systems which are arguably much more expensive to maintain and scale
than their bot counterparts. Given this, it is very important to ensure that these
systems are robust and do not carry any undue weaknesses. In this section, we
focus on studying the prevalence of any such issues which can potentially enable
targeted cloaking attacks against human analysis systems in the future.

4.1 Geolocation-Based Evasion Attacks

Prior works have advocated the use of diverse geolocations for APEs when visit-
ing candidate phishing sites in order to thwart geolocation-based cloaking tech-
niques used by attackers [17]. More recent work has shown that many APEs
have in fact heeded this recommendation and heavily diversified the network
infrastructure used for visits to the candidate sites [10]. We now investigate if
the diversification has also made its way to the human analysis systems used by
APEs. For this, we compare the network diversity of visits coming from human
analysts with the overall network diversity of the visits. These results can be
seen in Table 2 which shows the distinct number of IP addresses (IP) as well
as countries associated with these IP addresses in the two sets of data for each
APE. We also repeat the numbers about site visit counts for the two sets in
order to present a context for this comparison.
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Table 2. Table demonstrating the lack of diversity of geolocation in requests made by
the human analysis systems across different APEs.

APE Sites IP Country

x All x All x All

APWG - 700 - 3793 - 14

Bitdefender 112 270 37 940 1 (Romania) 40

GSB 168 676 85 843 1 (India) 2

SmartScreen 154 589 100 326 1 (India) 13

Netcraft 70 700 14 1633 2 (UK: 97%) 49

OpenPhish 4 700 - 4452 - 63

ZeroCERT - 700 - 3 - 1

Firstly, we can see that the data in the “All” column are mostly in agreement
with prior results in [10] and show that APEs are persisting to invest in diver-
sification of the network infrastructure used for vetting websites. For instance,
OpenPhish used 4452 IP addresses and APWG used 3793 IP addresses to visit
the 700 sites we submitted to them. Similarly Netcraft used 1633 addresses for
crawling the 700 sites submitted to them. However, their human analysis system,
on the other hand, visited 70 sites using only 14 different IP addresses showing
a vast difference in the ratio of IP addresses used to the number of sites visited
between the two cases (2.33 for all vs. 0.2 for the human system). Same is the
case for IP addresses of other APEs as well. These differences become even more
stark when we consider the country associated with these IP addresses. While
Bitdefender uses 40 different countries all over the world for visiting candidate
phishing sites, their human analysis system uses only IP addresses belonging
to Romania for this purpose. Similarly, 97% of Netcraft’s human system visits
(68/70 visits) are from UK, although overall, they use IP addresses from 49
different countries. It is to be noted here that Bitdefender is head quartered
in Romania while Netcraft is headquartered in UK which likely explains why
these countries were chosen by them for hosting their human analysis systems.
On a similar note, GSB and Microsoft SmartScreen are only using IP addresses
from India for all their human analysis system visits. Thus, even though all of
these are global companies with users all over the world, an attacker can easily
avoid their elaborate human analysis systems by simply ignoring potential vic-
tims from a handful of countries. Concretely, if an attacker can set up an evasive
malicious site that specifically serves benign content to India, Romania and UK,
our results show that majority of human analysis visits can be evaded.

Mitigations. We strongly recommend APEs to adopt network request diver-
sification infrastructure for their human analysis systems to avoid geolocation-
based evasion attacks discussed above. This can be easily achieved with the help
of solutions such as commercial VPNs which can provide support for switch-
ing between multiple IP addresses globally. Our results above which indicate
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the general visits of APEs coming from a large number of geolocations already
points to the fact that APEs are already potentially using such mechanisms for
their bot analysis systems. Upon further analysis of the data pertaining to visits
from diverse geolocations, we found an interesting case study regarding Bitde-
fender. We noticed that 54 honey sites submitted to Bitdefender had HTTP
sessions in which each session involved HTTP requests from IP addresses in 2–5
different countries all over the world. Collectively, we noticed that IP addresses
from 13 different countries were used for this. While switching IP addresses
mid-session might unfortunately make these mechanisms conspicuous and thus
make the IP addresses fingerprintable by attackers, nevertheless, this is still a
step in the right direction. Proper implementation of such IP address switching
mechanisms (without any side channels such as session cookie sharing) in human
analysis systems can make them thwart geolocation-based evasion attempts by
attackers. We thus recommend APEs to pursue such tactics.

4.2 User Agents

Another important issue pointed out in [17] was the effectiveness of certain
“device-type” based cloaking attacks on APEs. For example, their research
showed that a phishing website set to distribute malicious content only to mobile
(Android/iOS) user-agents tends to be very resistant to blocklisting. As a result,
APEs have evolved tremendously to improve user agent diversity as was evi-
denced in [10]. We also attempted to measure this with our data. Table 3 demon-
strates this. The second column in the table shows the popularity of OS/Browser
combinations as per our user study. While the source of our user study partici-
pants (Amazon MTurk), might have biased the data towards more desktop users
than normal, we believe that the proportion of users using various platforms in
desktop and mobile platforms is still a good indicator of the popularity of user
agents as it falls in line with results from larger studies [7]. The “All Requests”
part of the table shows the probability that a domain visited by any of the APEs
will be done so with a particular User-Agent header as per our data. We marked
any probability value less than 0.1 in red and any value more than 0.5 in green
to highlight good and bad values. Note that these values often sum up to more
than 1 as the same domain submitted to an APE is often visited from multiple
platforms. For the “Combined” column, we treat these individual probabilities
as being related to a random event and obtain the combined probability for a
domain that is submitted to all APEs to be visited by a particular user agent.
To clarify, assume pi is the probability for a user agent to be visited by an APE
i. We compute the combined probability for a visit from the same user agent by
computing 1 − ∏n

i=1 (1 − pi). The results confirm those in [10] that APEs have
largely evolved to improve diversity in the user agents they use to vet candi-
date phishing pages. We can see that even the lowest combined probability is
about 0.25 for Windows/Opera thus showing that all popular user agents are
adequately represented (cumulatively) by the APEs. Of particular note is Bitde-
fender and OpenPhish both of which have a significant amount of visitors from
a diverse set of user agents.
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Table 3. Lack of diversity in the browsing agents used for human analysis systems of
APEs. The numbers in the cells indicate the probability that a given APE will visit
a submitted site with a given User-Agent header. Values above 0.5 are in green and
below 0.1 are in red.
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Windows/
Chrome

279/433
(0.64)

0.51 0.74 1.00 0.10 0.95 1.00 0.00 1.00 0.82 0.00 0.18 0.14 0.87

Windows/
Firefox

32/433
(0.07)

0.82 0.32 0.00 0.00 0.46 0.14 0.00 0.94 0.12 0.00 0.00 0.01 0.14

Windows/
Edge

18/433
(0.04)

0.14 0.07 0.08 0.91 0.00 0.14 0.00 0.94 0.02 0.00 0.82 0.00 0.83

Windows/
Opera

6/433
(0.01)

0.00 0.14 0.00 0.00 0.00 0.12 0.00 0.25 0.00 0.00 0.00 0.00 0.00

Android/* 40/433
(0.09)

0.04 0.14 0.00 0.00 0.69 0.14 0.00 0.78 0.00 0.00 0.00 0.00 0.00

macOS/* 33/433
(0.08)

0.09 0.16 0.00 0.00 0.26 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

ChromeOS/* 13/433
(0.03)

0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.38 0.00 1.00 0.00 0.00 1.00

Linux/* 7/433
(0.02)

0.01 0.28 0.00 0.00 0.34 0.17 0.43 0.78 0.05 0.00 0.00 0.84 0.85

iOS/* 5/433
(0.01)

1.00 0.18 0.00 0.00 0.97 0.15 0.00 1.00 0.00 0.00 0.00 0.00 0.00

The corresponding probability that a human analyst will use a particular
user agent is on the last section of the table. We only consider the 4 main
APEs which had human visitors for this. These probabilities are also combined
similar to the other section and are in great contrast with the other one. In
particular, we can see that there is not a single human request from Android,
iOS, macOS, Windows/Opera user agents from even a single APE. This leaves
all these popular platforms exposed to targeted evasion attacks that completely
avoid human analysis. Note that as this includes both Android and iOS, this
finding means that all mobile users can be exposed to targeted phishing attack
pages that can evade all human analysis. It is also interesting to see the user
agent diversities for human analysis systems of individual APEs. We note that
all GSB systems simply use Google’s own Chrome OS based systems for all of
their human analysis despite them being not very popular in the wild. Similarly,
SmartScreen’s human analysis systems are predominantly using the Microsoft’s
own Edge browsers for this. Both of these APEs are thus largely using uncommon
browsing agents leading to potential cloaking attacks. It is also interesting to
see how Bitdefender also has a great lack in diversity in their human systems
(compared to their general requests) although they fare better than Google and
Microsoft by atleast using the most popular “Windows/Chrome” user agent for
all their visits thus protecting at least a majority of users from targeted evasion
attacks.
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Mitigations. We strongly recommend APEs to improve user agent diversity for
their human analysis systems. However, this is arguably a complicated problem.
While simple measures such as adopting user-agent changing extensions [8,9]
might seem to solve this problem on the surface, APEs will face a risk of creat-
ing new browser anomalies which miscreants can abuse to fingerprint or evade
analysis systems [10]. Another more viable solution is to truly improve diver-
sity in the systems used by human analysts by adopting diverse browser/OS
platforms for their systems. At the very least, all popular desktop and mobile
platforms used by majority of users should be covered by these analysis systems.

4.3 Timing Blind Spots

We next measured the time it takes for human analysts of different APEs to
first visit a submitted site. The median times for different APEs varied with
Bitdefender and SmartScreen being the fastest APEs with less than 4 h of
human response time. GSB was the slowest with a median turnaround time
of about 30 h. This is very slow compared to GSB’s overall median response
time of only about 34 min; but this is understandable as this figure includes
automated crawlers which are expected to be more responsive. However, we
were still intrigued by this relatively low response time of GSB’s human analysis
system in comparison to other APEs and investigated this further. For this, we
mapped the time of visits from human analysts into Indian Standard Time (IST)
as we saw previously that all GSB human visits were from IP addresses in India.
The graph depicting the day of these visits in Fig. 3 shows that none of the 190
visits from GSB happened over the weekends (per IST). This is likely because
the human analyst system was being run in a typical office like setup that does
not operate over the weekends. However, this can be abuse by attackers. For
example, a social engineering attacker who starts a campaign on Friday night
can effectively have two full days before the attack is analyzed by a human from
GSB. This leaves a sufficiently large time gap for a large-scale campaign.

Mitigations. Such timings blind spots need to be plugged by APEs by promot-
ing capabilities for human analysis at least on a daily basis. If such changes are
infeasible due to financial restrictions, then another potential approach could be
to share candidate phishing URL data with other APEs that have complemen-
tary human analysis capabilities.

4.4 Sensor API-based Mobile Evasion Attacks

As described in Sect. 2, one of the novelties of our experimental setup was the
collection of biometric data from APEs such as information about keyboard,
mouse events as well as other events from sensor devices. Therefore, we explored
the possibility of developing evasive attacks against APEs by using this data.
Interestingly, while human visits from APEs did result in keyboard and mouse
data, we were unable to collect any sensor data from any of the APEs we studied.
Note that none of the APE visits had any web sensor data even when they
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Fig. 3. Daily visits of GSB analysts Fig. 4. Uncloaked and cloaked sensor
API-based phishing pages

proclaimed to be coming from mobile user agents. This is anomalous as our
tests with multiple Android/Chrome devices showed that they all emit sensor
data from the Accelerometer as well as deviceMotion web APIs in their default
settings. In order to remove personal bias, we also performed the same analysis on
35 users in our MTurk study and found that all of them were also emitting data
from the accelerometer API and deviceMotion APIs thus showing that many
users do not change the default settings on these devices. Our data analysis also
showed that all the affected Android/Chrome devices emit the first movement
data with in the first few seconds (median time = 2.5 s). On the other hand,
all the user agents for whom the accelerometer/deviceMotion web APIs are
inaccessible due to user permission issues or lack of support (such as in the case
of APEs) throw an error message during page load itself. We thus concluded that
it will be possible to create effective phishing sites capitalize on these anomalies
to target Android/Chrome users. Given that Android/Chrome is one of the most
popular mobile user agents (35/45 mobile users in our study), this attack can
leave a lot of users exposed to pages that conduct targeted social engineering
attacks with impunity.

Evaluation. We implemented the cloaking logic in JavaScript and PHP and reg-
istered 10 new domain names to host 10 evasive phishing sites for evaluation. All
of these sites show a “Bank of America” phishing page for any Android/Chrome
user agent that emits accelerometer and deviceMotion data. On the other
hand, if there is any error in accessing these web APIs or if there is a 10 s time-
out without any such data emissions, we display a cloaked page to the user as in
Fig. 4. As baseline, we also created 5 phishing sites that show the same phishing
page without any cloaking logic. We started the evaluation in July 2021 when
we reported all 15 sites to the 7 APEs we considered in this paper. On the very
first day of this experiment, after our reporting, all 5 baseline sites got blocked
in all major web browsers with GSB blocklisting them in as little as 2.5 h. This
figure is in line with prior studies [10,17] and shows that the phishing pages we
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created are considered as malicious by APEs. Upon noticing that none of the
10 evasive sites got blocked, we continued to report these 10 sites daily over
the next two weeks to all 7 APEs. Despite this, all of these 10 sites remained
unblocked indefinitely until now spanning a period of more than seven months.

Mitigations. We showed that it is possible to create evasive phishing attacks
against Android/Chrome platform due to two main reasons: (1) None of the
APEs’ human analysis systems perform testing using Android/Chrome devices.
(2) None of the APE’s general visitors that purport to use Android/Chrome user
agents (likely bots) emit web sensor API data similar to how the real devices
behave. Solving either of the problems will help thwart this attack vector. As
already discussed earlier, the mitigation for (1) is to simply support more diver-
sity in the devices used by human analysis systems of APEs. To handle (2), one
potential solution is to improve the automated crawler technology used by the
APEs emit fake web sensor data similar to real devices. We already saw similar
methods being used by Netcraft in a lot of their failed visits to our CAPTCHA
pages where the visitors were inputting random repeated textual content into
text boxes. APEs should adopt similar approaches for the web sensor APIs as
well. A much simpler and complementary approach to eliminate this entire attack
surface is for Android or Chrome developers to disable this default configuration
of allowing websites access to these sensor APIs. This action which will be in
line with other mobile OSs (such as iOS) and browsers (such as Firefox) will also
have the added benefit of improving user privacy as prior research has shown
that these APIs can be used for fingerprinting attacks [11].

Other Attacks. While most of the above evasive attacks were mainly focused
on the human analysis systems, our data analysis also revealed some weaknesses
in what are most likely the automated crawler systems being used by APEs.
For example, all of GSB’s visits that were solving Popup challenges from non-
India IP addresses were solving the challenges in less than a second. This is in
sharp contrast to the solution times for GSB’s human analysts as well as our
user study participants that took at least 10 s. Such timing discrepancies can
easily be utilized to identify APE bot IP addresses and them to a blocklists
in phishing kits as is often done in the wild [18]. Similarly, we notice that all
of the APEs ecosystems (human+bot) continue to lack heavily in diversity of
browser fingerprints which keeps them prone to evasive attacks as proposed
in [10]. We avoid discussing this in detail here as similar issues that affect all
APE ecosystems have been tackled in earlier works. Instead, we chose to only
focus on those issues that largely affect the human analysis systems of APEs in
this paper.

5 Discussion

Conservative Estimates. In this paper, we primarily relied upon the event of
whether a visitor is solving a particular CAPTCHA challenge in order to deduce
if that visitor is human. However, there might be human analysts who do not
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solve some CAPTCHA challenges as a result of a notion that our pages are not
suspicious enough to warrant inspection. We thus concede here that the numbers
presented in Sect. 3 might be a lower-bound on the actual size of human analyst
systems being used by APEs. This only means that the APEs are spending even
more resources to host such analysis systems than what was implied earlier and
is hence even more important to take measures to protect them form evasion
attacks.

Further, since the cases in which analysts are solving CAPTCHA challenges
can be considered a random subset of all cases of human visits, we expect the
same outcomes as in Sect. 4 when analyzing the set of all human visits as well.
In order to demonstrated this, we used GSB as a case study. We repeated the
browser fingerprint-based clustering we described earlier for all visits from GSB
irrespective of whether the visit resulted in a CAPTCHA solution. 3 of the
4 clusters that we determined in Sect. 3 to be coming from humans have now
“expanded” on their size and included several visits where the challenges were not
solved but shared the same fingerprints. In total, these clusters were covering 258
distinct sites (in 295 visits) instead of the 168 distinct sites where challenges were
solved thus indicating an even healthier human-analysis rate of 37%. However,
as expected, all the weaknesses remain the same with this expanded dataset of
probable human visits as well. For example, all the 295 visits were from Indian
IP addresses with Chrome OS user agents none of which have happened over
the weekends.

Industry Disclosure. We have conducted an elaborate industry disclosure pro-
cess with all four affected APEs. As part of this, we have disclosed all of our
findings in the form of detailed reports describing our experimental procedures
and the weaknesses we discovered in their human analysis systems. In the case
of Google, we have also disclosed information about the evasive phishing attacks
we were able to launch against the Android/Chrome ecosystems which can easily
be addressed by turning off the default emission of web sensor API data similar
to other platforms. The response from APEs has been positive with one APE
mentioning that multiple internal bug reports have been filed as a result of our
disclosures.

Ethical Considerations. Our APE evaluation setup involved sending honey
site URLs to APEs. We limited these submissions to only about 20 per day
which is much smaller in comparison to the large number of suspicious URLs
vetted by these APEs everyday. Further, based on our server logs, we estimate
that the total time spent by the human analysts of all the APEs vetting our
CAPTCHA-laden honey pages is only about 1.2 h. We thus argue that the small
temporary overhead experienced by the APEs during our experimental period
far outweighs the security benefits gained by the insights we present in this
study. Our setup is also similar to prior studies on APEs such as [10,17,19] all of
which involved submitting similar honey URLs to APEs. Similar to these prior
works, we made the phishing pages described in Sect. 4.4 non-functional in order
to prevent accidental sensitive information input from random visitors. Finally,
our user study received exemption from the university IRB board and we also
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sought prior approval from the participants describing all the data collection
methodologies before directing them to the CAPTCHA challenge pages.

6 Related Work

As discussed in Sect. 1, despite phishing being an old problem, only recently
has the research community begun to focus its attention on studying the robust-
ness of APEs with studies such as [10,13,17,19,23]. Among these, only [13]
(and a small part of [23]) have tried to focus on the ability of APEs to over-
come CAPTCHA-based cloaking challenges. However, they have concluded that
APEs were largely incapable of solving such challenges. In sharp contrast to this,
our study showed strong evidence that multiple APEs do in fact have ability to
solve a large portion of such challenges there by indicating presence of elaborate
human analysis systems complementing their automated crawler infrastructure.
We attribute this difference to either the gap in the timelines of these studies
during which time APEs could have potentially improved or the larger scale of
our evaluation experiments. We relied on a recently proposed APE evaluation
methodology [10] for achieving this scale. Our discovery of human analysis sys-
tems in the APEs thus allowed us an opportunity to conduct the first systematic
study of the robustness of the human analysis systems of APEs which revealed
several weaknesses in these systems as presented in Sect. 4.

7 Conclusion

We conducted a large-scale study that tests the ability of 7 popular APEs to
overcome CAPTCHA-based challenges. Through this, we provide strong evi-
dence for the presence of an elaborate human analysis system in 4 of the 7 APEs
we studied. These are: GSB, SmartScreen, Bitdefender and Netcraft. While this
measurement bodes well for the web security community, unfortunately, our
study went on to show some grave weaknesses which can be abused by future
attackers to launch evasive attacks against these elaborate human analysis sys-
tems. Interestingly, many of these weaknesses can be easily mitigated and are
already being done so in most of the automated crawler systems of these APEs.
We thus provided recommendations to APEs for doing the same with the expen-
sive and vital human analysis systems as well. Our work in this paper is therefore
crucial to help improve the current security posture of Anti Phishing Entities
(APEs).
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